КАРТЫ РОССИИ В КОНИЧЕСКОЙ ПРОЕКЦИИ

Конические проекции начали использоваться в Древней Греции. В России они применены впервые в атласе Кириллова (1734). Используются конические проекции для изображения терри-

Рис. 59 Коническая проекция

Тории , вытянутых по долготе и находящихся в средних широтах.

Сущность построения нормальных конических проекций заключается в том, что на боковую поверхность конуса проектируются параллели и меридианы с поверхности глобуса. При этом ось конуса совпадает с осью глобуса, а конус касается по одной (или двум, если он секущий) параллели, которая так и называется — параллель касания, она же линия нулевых искажений. Затем конус разрезается по образующей и разворачивается в плоскость. При этом картографическая сетка представляет собой трапеции, образованные меридианами — прямыми линиями, расходящимися под углом из вершины конуса, и параллелями — дугами концентрических окружностей с центром в вершине конуса (рис. 59).

Отметим, что угол у между меридианами на карте не равен разности долгот (ДА,), которые обозначены у меридианов , а может быть вычислен по формуле

По характеру искажений конические проекции разделяются на равноугольные, равнопромежуточные, равновеликие.

Коническая проекция Птолемея строится на прямом касательном конусе. Представив себе пространственную картину взаимного расположения фигур, перейдем к построению сетки проекции.

1. Задаются исходные данные для построения сетки, а именно масштаб карты, расстояние в градусах между параллелями (п°) и меридианами (т°), широта параллели касания (ф0).

2. Вычисляется радиус параллели касания (в мм) по формуле

3. Вычисляется расстояние между параллелями (а — отрезок меридиана — дуги большого круга) по формуле

360°

4. Расстояние между меридианами (b — отрезок параллели) определяется на параллели касания. Из таблиц известно значение 1° дуги данной параллели (в км), его умножают на разность долгот между соседними меридианами (т°) и переводят в миллиметры, зная масштаб данной карты.

После этих вычислений приступают к построению проекции на листе бумаги.

1. Проводят меридиан симметрии. Для России принято считать таковым меридиан 100° в. д.

2. Вычисленным радиусом из вершины конуса, взятой на меридиане симметрии произвольно, проводят параллель касания. Обычно широту выбирают так, чтобы параллель находилась посредине карты. Для России это может быть 55° с. ш.

3. По обе стороны от параллели касания на меридиане симметрии откладывают отрезки — расстояния между параллелями. Сами дуги параллелей проводят из вершины конуса.

4. На параллели касания (не имеющей искажений на карте) откладывают отрезки b — расстояния между меридианами.

Внутренней рамкой ограничивают картографическое изображение территории России или другой страны, затем строят градусную рамку, внешнюю рамку, и построение картографической сетки в проекции закончено.

Далее по координатам наносят очертания территории, контура и необходимые объекты, а также математические элементы: изоколы, эллипс искажений.

Свойства проекции Птолемея:

1. Главный масштаб сохраняется по всем меридианам и параллели касания.

2. Частные масштабы по другим параллелям больше главного.

3. Равноугольные и равновеликие свойства сохраняются вдоль параллели касания — линии нулевых искажений.

4 Искажения контуров, площадей возрастают по обе стороны от параллели касания. Причем в полосе 15° по обе стороны от нее они небольшие, далее к северу нарастают более значительно, чем к югу.

В 1931 г. для карт СССР была разработана нормальная коническая проекция В. В. Каврайского. Она применялась для «Атласа СССР» (7 класс), «Большого советского атласа мира». Проекция разработана Каврайским с расчетом наименьших искажений длин по меридианам и параллелям для территории СССР к югу от полярного круга. К северу от него качество изображения в расчет не принималось (рис. 60).

Проекция построена на секущем конусе и имеет две параллели касания, а именно 47° с. ш. и 62° с. ш., наибольшие искажения углов около 0,5°. В этой проекции имеются линии нулевых искажений всех видов. По всем меридианам масштаб главный, по параллелям касания также. При работе школьников или студентов с картами в этой проекции можно пользоваться транспортиром для измерения углов.

Рис. 60. Сетка в проекции Каврайского

В проекции Каврайского издана в 1949 г Гипсометрическая карта СССР в масштабе 1 2 500 000

С 50-х гг для карт СССР применяется нормальная равнопромежуточная проекция Ф Н Красовского Принцип ее построения похож на построение проекции Каврайского для расчетов использован тот же секущий конус, но введено условие сохранения площади заданного пояса и равенства масштабов длин по его крайним параллелям -39°48′ с ш и 73°30′ с ш , т е раздвинута полоса между параллелями касания, в пределах которой можно вы-

Рис 61 Сетка в проекции Красовского

полнить картометрические работы, не внося поправки на искажения (Рис 61)

Недостаток нормальных конических проекций состоит в том, что на касательном конусе главный масштаб сохраняется только по параллели

касания, в остальных местах имеются искажения. На секущем конусе восточные и западные территории сильно развернуты полюс находится за пределами изображения

Чтобы сохранить масштаб на всех параллелях, необходимо градусную сетку строить с помощью множества конусов, а именно каждую параллель — на своем Тогда каждая параллель станет параллелью касания (радиус ее вычисляется по формуле Птолемея р = г ctg ф0) и изобразится без искажений Далее найти на параллелях, пользуясь таблицей длин дуг в Г, точки прохождения меридианов и провести их как сложные кривые, соединяя точки прохождения меридианов на соседних параллелях. Таков принцип строения картографической сетки в поликонических проекциях.

Вы можете оставить комментарий, или ссылку на Ваш сайт.

Оставить комментарий